Lịch sử toán học Định lý lớn Fermat

PythagorasDiophantus

Định lý Pythagoras về tam giác vuông

Bộ ba số Pytago

Trong thời cổ đại, người ta biết rằng một tam giác có các cạnh lần lượt có tỷ lệ tương ứng là 3: 4: 5 sẽ là một tam giác vuông. Điều này đã được sử dụng trong xây dựng và sau đó sớm được dùng trong hình học. Trong thời cổ đại, điều này đã được phát hiện ra chỉ là một ví dụ của một nguyên tắc chung rằng bất kỳ tam giác nào có tổng bình phương hai cạnh bất kỳ bằng bình phương cạnh còn lại thì tam giác đó là tam giác vuông.

Đây được gọi là định lý Pytago, và một bộ ba số thỏa mãn được điều kiện này được gọi là bộ ba số Pytago. Nó được đặt tên dựa trên tên của nhà toán học Hy Lạp cổ đại- Pytago. Ví dụ các bộ ba (3, 4, 5) và (5, 12, 13). Có rất nhiều bộ ba số như vậy, và các phương pháp để tạo ra bộ ba số đó được nghiên cứu ở nhiều nền văn hóa khác nhau, bắt đầu với người Babylon, sau đó lần lượt là các nhà toán học Hy Lạp, Trung Quốc và Ấn Độ. Về mặt toán học, định nghĩa của một bộ ba số Pytago là một tập gồm ba số nguyên (a, b, c) thỏa mãn phương trình: a2+ b2= c2

Định lý cuối cùng của Fermat xem xét phương trình này cho bậc lớn hơn 2, và cho biết mặc dù có vô số bộ ba nguyên dương thỏa mãn phương trình cho n = 2, không có nghiệm dương nào cho n > 2.

Phương trình Diophantine

Phương trình Fermat, xn + yn = zn với các nghiệm là số nguyên dương, là một ví dụ về phương trình Diophantine, được đặt tên theo tên của nhà toán học Alexandrian ở thế kỷ thứ ba, Diophantus, người đã nghiên cứu chúng và phát triển phương pháp để giải một số phương trình Diophantine. Một vấn đề Diophantine điển hình là tìm hai số nguyên x và y sao cho tổng của chúng và tổng bình phương bằng hai số A và B tương ứng:

A= x+y

B= x2+ y2

Công việc chính của Diophantus là nghiên cứu cuốn Arithmetica, nhưng trong đó chỉ còn một vài phần công việc của ông là còn tồn tại. Phỏng đoán của Fermat về Định lý Cuối cùng của ông đã được truyền cảm hứng khi đọc một ấn bản mới của một cuốn sách Arithmetica, được Claude Bachet xuất bản và dịch sang tiếng La-tin vào năm 1621.

Phương trình Diophantine đã được nghiên cứu trong hàng ngàn năm. Ví dụ, phương trình Diophantine bậc hai x2 + y2 = z2 được giải bởi các bộ ba số Pytago, ban đầu được giải quyết bởi người Babylon (khoảng 1800 TCN). Cách giải cho các phương trình Diophantine tuyến tính, như 26x + 65y = 13, có thể được tìm thấy bằng thuật toán Euclide (khoảng thế kỷ 5 trước công nguyên). Nhiều phương trình Diophantine có một hình thức tương tự như phương trình của Định lý Cuối cùng của Fermat theo quan điểm của đại số. Ví dụ, có vô số các số nguyên dương x, y, và z sao cho xn + yn = zm trong đó n và m là các số nguyên tố tự nhiên.

Giả thuyết của Fermat

Vấn đề II.8 trong ấn bản 1621 của Arithmetica được viết bởi Diophantus. Vì phía bên phải của sách là lề quá nhỏ để chứa cách chứng minh của Fermat về "định lý cuối cùng" của Fermat.

Vấn đề II.8 của Arithmetica hỏi làm thế nào một số bình phương nhất định được chia thành hai số bình phương khác; nói cách khác, với một số k nhất định, tìm hai số u và v sao cho k2 = u2 + v2. Diophantus cho thấy làm thế nào để giải quyết vấn đề tổng và bình phương khi k= 4.

Vào khoảng năm 1637, Fermat đã viết bài toán cuối cùng của mình trong bản sao của Arithmetica bên cạnh vấn đề tổng bình phương của Diophantus.

Sau cái chết của Fermat năm 1665, con trai của ông, Clément-Samuel Fermat, đã sản xuất một ấn bản mới của cuốn sách (1670) với những nhận xét của cha mình. Mặc dù thời gian đó, nó không hẳn  thực sự là một định lý,. Sau này, nó đã được biết đến như Định lý Cuối cùng của Fermat bởi vì nó là tập cuối của các định lý được khẳng định của Fermat mà vẫn không được chứng minh.

Không biết liệu Fermat có thực sự tìm ra cách chứng minh hợp lệ cho tất cả các số mũ n không, nhưng dường như nó là không chắc chắn. Chỉ có một bằng chứng liên quan của ông đã tồn tại, cụ thể là cho trường hợp n = 4, như mô tả trong phần Bằng chứng cho số mũ cụ thể. Trong khi Fermat đặt ra các trường hợp n = 4 và n = 3 như là những thách thức đối với các nhà toán học, như Marin Mersenne, Blaise Pascal, và John Wallis. Ông chưa bao giờ đưa ra một trường hợp chung. Hơn nữa, trong ba mươi năm cuối cùng của cuộc đời, Fermat không bao giờ viết về "cách chứng minh kỳ diệu thực sự" của ông về trường hợp chung, và không bao giờ xuất bản nó. Van der Poorten cho thấy rằng mặc dù sự thiếu xót của một chứng minh là không đáng kể, sự thiếu thách thức có nghĩa là Fermat nhận ra rằng ông không có cách chứng minh nào cả; Trích dẫn Weil thì người ta cho rằng Fermat phải có một thời gian ngắn lừa dối mình với một ý tưởng không thể cứu vãn được nữa.

Các kỹ thuật mà Fermat có thể đã sử dụng trong một "cách chứng minh kỳ diệu" là không được biết đến.

Taylor và chứng minh của Wiles dựa vào các kỹ thuật của thế kỷ 20. Cách chứng minh của Fermat có thể đã được có bản hóa bằng cách so sánh.

Trong khi giả thuyết lớn của Harvey Friedman ngụ ý rằng bất kỳ định lý có thể chứng minh nào (bao gồm định lý cuối cùng của Fermat) có thể được chứng minh bằng cách sử dụng 'số học cơ bản', thì một bằng chứng cần phải là "cơ bản" chỉ theo nghĩa kỹ thuật và có thể liên quan đến hàng triệu bước, quá lâu để có được bằng chứng của Fermat.

Tài liệu tham khảo

WikiPedia: Định lý lớn Fermat http://www.britannica.com/EBchecked/topic/204685 http://math.stanford.edu/~lekheng/flt/wiles.pdf http://vietsciences.free.fr/biographie/mathematici... http://d-nb.info/gnd/4154012-8 http://diendantoanhoc.net/forum/index.php?showtopi... http://diendantoanhoc.net/modules.php?name=News&fi... http://www.diendantoanhoc.net/forum/index.php?show... http://cgd.best.vwh.net/home/flt/fltpdf.zip http://baotintuc.vn/giai-mat/fermat-va-dinh-ly-lon... https://commons.wikimedia.org/wiki/Category:Fermat...